On the existence of a majority committee
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 82-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basing on the criterion of existence of a $q$-member committee of an arbitrary system of constraints related to the structure of its set of maximal solvable subsystems, we classify the sets forming a 5-committee in accordance with the corresponding graphs of the maximal solvable subsystems.
@article{DM_1997_9_3_a6,
     author = {M. Yu. Khachai},
     title = {On the existence of a majority committee},
     journal = {Diskretnaya Matematika},
     pages = {82--95},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a6/}
}
TY  - JOUR
AU  - M. Yu. Khachai
TI  - On the existence of a majority committee
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 82
EP  - 95
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_3_a6/
LA  - ru
ID  - DM_1997_9_3_a6
ER  - 
%0 Journal Article
%A M. Yu. Khachai
%T On the existence of a majority committee
%J Diskretnaya Matematika
%D 1997
%P 82-95
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_3_a6/
%G ru
%F DM_1997_9_3_a6
M. Yu. Khachai. On the existence of a majority committee. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 82-95. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a6/