A new limit theorem for a critical branching process in a random environment
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 52-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_n\}$ be a critical branching process in random environment with linear-fractional generating functions, $m_n$ be the conditional expectation of $\xi_n$ with respect to random environment. We prove a theorem on convergence of the sequence of random processes $\{\xi_{[nt]}/m_{[nt]},\ t\in(0,1] \mid \xi_n>0\}$ as $n\to\infty$ in distribution in the corresponding functional space.
@article{DM_1997_9_3_a4,
     author = {V. I. Afanasyev},
     title = {A new limit theorem for a critical branching process in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {52--67},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a4/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - A new limit theorem for a critical branching process in a random environment
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 52
EP  - 67
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_3_a4/
LA  - ru
ID  - DM_1997_9_3_a4
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T A new limit theorem for a critical branching process in a random environment
%J Diskretnaya Matematika
%D 1997
%P 52-67
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_3_a4/
%G ru
%F DM_1997_9_3_a4
V. I. Afanasyev. A new limit theorem for a critical branching process in a random environment. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 52-67. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a4/