Pareto-optimality conditions in discrete vector optimization problems
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 153-160
Voir la notice de l'article provenant de la source Math-Net.Ru
For the vector optimization problem
\begin{gather*}
F = (f_1, f_2,\dots, f_n)\colon X\to\mathbf R^n,\qquad n\ge 2,
\\
f_i(x)\to \min_X\qquad \forall\,i\in N_n=\{1, 2,\dots,n\},
\end{gather*}
with a finite set of vector estimators $F(X)$ we give a wide class of efficiency (Pareto-optimality) criteria
in terms of linear convolutions of transformed partial criteria. In particular, it is proved that an element
$x^o\in X$ is efficient if and only if there exists a vector
$(\lambda_1,\lambda_2,\dots,\lambda_n)$, $\lambda_i>0$, $i\in N_n$,
such that
$$
\sum_{i\in N_n}\lambda_i\alpha^{f_i(x^o)}
\le\sum_{i \in N_n}\lambda_i\alpha^{f_i(x)}\qquad \forall\,x \in X,
$$
where $\alpha=n^{1/\Delta}$,
$\Delta=\min\{f_i(x)-f_i(x') >0\colon x, x' \in X,\ i \in N_n\}$.
This research was supported by the Foundation for Basic Research of Republic Byelarus
(grants F95–70 and MP96–35), and
the DAAD and the International Soros Educational Program in Exact Sciences
(grant ‘Soros Professor’ for the first of the authors).
@article{DM_1997_9_3_a11,
author = {V. A. Emelichev and O. A. Yanushkevich},
title = {Pareto-optimality conditions in discrete vector optimization problems},
journal = {Diskretnaya Matematika},
pages = {153--160},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a11/}
}
TY - JOUR AU - V. A. Emelichev AU - O. A. Yanushkevich TI - Pareto-optimality conditions in discrete vector optimization problems JO - Diskretnaya Matematika PY - 1997 SP - 153 EP - 160 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1997_9_3_a11/ LA - ru ID - DM_1997_9_3_a11 ER -
V. A. Emelichev; O. A. Yanushkevich. Pareto-optimality conditions in discrete vector optimization problems. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 153-160. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a11/