Pareto-optimality conditions in discrete vector optimization problems
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 153-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the vector optimization problem \begin{gather*} F = (f_1, f_2,\dots, f_n)\colon X\to\mathbf R^n,\qquad n\ge 2, \\ f_i(x)\to \min_X\qquad \forall\,i\in N_n=\{1, 2,\dots,n\}, \end{gather*} with a finite set of vector estimators $F(X)$ we give a wide class of efficiency (Pareto-optimality) criteria in terms of linear convolutions of transformed partial criteria. In particular, it is proved that an element $x^o\in X$ is efficient if and only if there exists a vector $(\lambda_1,\lambda_2,\dots,\lambda_n)$, $\lambda_i>0$, $i\in N_n$, such that $$ \sum_{i\in N_n}\lambda_i\alpha^{f_i(x^o)} \le\sum_{i \in N_n}\lambda_i\alpha^{f_i(x)}\qquad \forall\,x \in X, $$ where $\alpha=n^{1/\Delta}$, $\Delta=\min\{f_i(x)-f_i(x') >0\colon x, x' \in X,\ i \in N_n\}$. This research was supported by the Foundation for Basic Research of Republic Byelarus (grants F95–70 and MP96–35), and the DAAD and the International Soros Educational Program in Exact Sciences (grant ‘Soros Professor’ for the first of the authors).
@article{DM_1997_9_3_a11,
     author = {V. A. Emelichev and O. A. Yanushkevich},
     title = {Pareto-optimality conditions in discrete vector optimization problems},
     journal = {Diskretnaya Matematika},
     pages = {153--160},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a11/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - O. A. Yanushkevich
TI  - Pareto-optimality conditions in discrete vector optimization problems
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 153
EP  - 160
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_3_a11/
LA  - ru
ID  - DM_1997_9_3_a11
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A O. A. Yanushkevich
%T Pareto-optimality conditions in discrete vector optimization problems
%J Diskretnaya Matematika
%D 1997
%P 153-160
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_3_a11/
%G ru
%F DM_1997_9_3_a11
V. A. Emelichev; O. A. Yanushkevich. Pareto-optimality conditions in discrete vector optimization problems. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 153-160. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a11/