Realization of hypergraphs by trees of minimal diameter
Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 91-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an algorithm of constructing a realization of a hypergraph $H=(VH,EH)$ by a tree of minimal diameter whose complexity is $$ O\Bigl(\max\Bigl(|VH|^3,|VH|\sum_{e_i\in EH} |e^i|^2\Bigr)\Bigr). $$
@article{DM_1997_9_2_a8,
     author = {O. I. Mel'nikov},
     title = {Realization of hypergraphs by trees of minimal diameter},
     journal = {Diskretnaya Matematika},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_2_a8/}
}
TY  - JOUR
AU  - O. I. Mel'nikov
TI  - Realization of hypergraphs by trees of minimal diameter
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 91
EP  - 97
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_2_a8/
LA  - ru
ID  - DM_1997_9_2_a8
ER  - 
%0 Journal Article
%A O. I. Mel'nikov
%T Realization of hypergraphs by trees of minimal diameter
%J Diskretnaya Matematika
%D 1997
%P 91-97
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_2_a8/
%G ru
%F DM_1997_9_2_a8
O. I. Mel'nikov. Realization of hypergraphs by trees of minimal diameter. Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 91-97. http://geodesic.mathdoc.fr/item/DM_1997_9_2_a8/