Realization of hypergraphs by trees of minimal diameter
Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 91-97
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest an algorithm of constructing a realization of a hypergraph
$H=(VH,EH)$ by a tree of minimal diameter whose complexity is
$$
O\Bigl(\max\Bigl(|VH|^3,|VH|\sum_{e_i\in EH} |e^i|^2\Bigr)\Bigr).
$$
@article{DM_1997_9_2_a8,
author = {O. I. Mel'nikov},
title = {Realization of hypergraphs by trees of minimal diameter},
journal = {Diskretnaya Matematika},
pages = {91--97},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_2_a8/}
}
O. I. Mel'nikov. Realization of hypergraphs by trees of minimal diameter. Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 91-97. http://geodesic.mathdoc.fr/item/DM_1997_9_2_a8/