A lower bound for the complexity of the realization of a Boolean function by two-layer switching circuits on a plane integral lattice
Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 40-52
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the complexity $L_d(f_n)$ of realization of individual Boolean functions by planar two-layer contact circuits is investigated. The functional part of such circuits contains contacts, conductors, and insulators. Besides, there is a special planar circuit containing only conductors and insulators which simulates the transmission of control actions (values of variables) to the contacts of the functional part. The area occupied by a circuit is considered as the measure of complexity. In the paper the bound of the form
$L_d(f_n)\ge Cn^2/\log_2 n$, where $C$ is a constant, is obtained for the universal Nechiporuk function.
@article{DM_1997_9_2_a3,
author = {O. A. Zadorozhnyuk},
title = {A lower bound for the complexity of the realization of a {Boolean} function by two-layer switching circuits on a plane integral lattice},
journal = {Diskretnaya Matematika},
pages = {40--52},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_2_a3/}
}
TY - JOUR AU - O. A. Zadorozhnyuk TI - A lower bound for the complexity of the realization of a Boolean function by two-layer switching circuits on a plane integral lattice JO - Diskretnaya Matematika PY - 1997 SP - 40 EP - 52 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1997_9_2_a3/ LA - ru ID - DM_1997_9_2_a3 ER -
%0 Journal Article %A O. A. Zadorozhnyuk %T A lower bound for the complexity of the realization of a Boolean function by two-layer switching circuits on a plane integral lattice %J Diskretnaya Matematika %D 1997 %P 40-52 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_1997_9_2_a3/ %G ru %F DM_1997_9_2_a3
O. A. Zadorozhnyuk. A lower bound for the complexity of the realization of a Boolean function by two-layer switching circuits on a plane integral lattice. Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 40-52. http://geodesic.mathdoc.fr/item/DM_1997_9_2_a3/