Limit theorems for the number of empty cells
Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 120-130
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the scheme of equiprobable allocating $n$ groups of particles, generally speaking, of different volumes, to $N$ cells. For $N\to\infty$ and various relations between the parameters of the scheme, we investigate the asymptotic behaviour of the number of empty cells among the $M$ chosen cells after allocating $n$ groups of particles. We obtain an integral and a local limit theorems on convergence to the normal law, as well as the Poisson-like limit theorems. In all cases considered, an estimate of the convergence rate is given.
@article{DM_1997_9_2_a12,
author = {E. R. Khakimullin and N. Yu. Enatskaya},
title = {Limit theorems for the number of empty cells},
journal = {Diskretnaya Matematika},
pages = {120--130},
year = {1997},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_2_a12/}
}
E. R. Khakimullin; N. Yu. Enatskaya. Limit theorems for the number of empty cells. Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 120-130. http://geodesic.mathdoc.fr/item/DM_1997_9_2_a12/