On regressive enumerations
Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 116-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We demonstrate that any regressive set can have either exactly one or denumerable many regressive enumerations (up to equivalence), and describe the sets possessing a single regressive enumeration.
@article{DM_1997_9_2_a11,
     author = {V. L. Mikheev},
     title = {On regressive enumerations},
     journal = {Diskretnaya Matematika},
     pages = {116--119},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_2_a11/}
}
TY  - JOUR
AU  - V. L. Mikheev
TI  - On regressive enumerations
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 116
EP  - 119
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_2_a11/
LA  - ru
ID  - DM_1997_9_2_a11
ER  - 
%0 Journal Article
%A V. L. Mikheev
%T On regressive enumerations
%J Diskretnaya Matematika
%D 1997
%P 116-119
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_2_a11/
%G ru
%F DM_1997_9_2_a11
V. L. Mikheev. On regressive enumerations. Diskretnaya Matematika, Tome 9 (1997) no. 2, pp. 116-119. http://geodesic.mathdoc.fr/item/DM_1997_9_2_a11/