Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes
Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 59-70
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem to estimate the probability that vectors
whose components are the frequencies of outcomes of independent
polynomial schemes with $N$ outcomes and $n$ trials each coincide.
We present local limit theorems for this probability under
various constraints imposed on the growth of the parameters $n$, $N$
and on the distributions of outcome frequencies in each scheme.
By the use of these results we derive asymptotic estimates
for the mean number of coinciding components of the outcome frequency
vectors in the case of two independent polynomial schemes.
@article{DM_1997_9_1_a4,
author = {A. N. Timashev},
title = {Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes},
journal = {Diskretnaya Matematika},
pages = {59--70},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_1_a4/}
}
TY - JOUR AU - A. N. Timashev TI - Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes JO - Diskretnaya Matematika PY - 1997 SP - 59 EP - 70 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1997_9_1_a4/ LA - ru ID - DM_1997_9_1_a4 ER -
A. N. Timashev. Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes. Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/DM_1997_9_1_a4/