Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes
Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 59-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem to estimate the probability that vectors whose components are the frequencies of outcomes of independent polynomial schemes with $N$ outcomes and $n$ trials each coincide. We present local limit theorems for this probability under various constraints imposed on the growth of the parameters $n$, $N$ and on the distributions of outcome frequencies in each scheme. By the use of these results we derive asymptotic estimates for the mean number of coinciding components of the outcome frequency vectors in the case of two independent polynomial schemes.
@article{DM_1997_9_1_a4,
     author = {A. N. Timashev},
     title = {Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes},
     journal = {Diskretnaya Matematika},
     pages = {59--70},
     year = {1997},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_1_a4/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 59
EP  - 70
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_1_a4/
LA  - ru
ID  - DM_1997_9_1_a4
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes
%J Diskretnaya Matematika
%D 1997
%P 59-70
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/DM_1997_9_1_a4/
%G ru
%F DM_1997_9_1_a4
A. N. Timashev. Estimates for the probability of the coincidence of the frequency vectors of outcomes of independent multinomial schemes. Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/DM_1997_9_1_a4/