A branching process with migration in a random environment
Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 30-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a Galton–Watson branching process $\{Z_n\}_{n=0}^\infty$ with migration in a random environment which is specified by a stationary Markov chain $\{\eta_n\}_{n=0}^\infty$ with finite state space. Let $f_{\eta_n}(z)$ be the offspring generating function of each particle of the $n$th generation, $M=\lim_{n\to\infty}\mathsf E\log f_{\eta_n}'(1)$. It is proved that the stationary distribution of the properly normalized number of particles in the process $\{Z_n\}_{n=0}^\infty$ converges to the uniform distribution on the interval $[0,1]$ as $M\to 1$. The work was supported by the Russian Foundation for Basic Research, grant 96–01–00338 and INTAS–RFBR 95–0099.
@article{DM_1997_9_1_a2,
     author = {E. E. D'yakonova},
     title = {A branching process with migration in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_1_a2/}
}
TY  - JOUR
AU  - E. E. D'yakonova
TI  - A branching process with migration in a random environment
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 30
EP  - 42
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_1_a2/
LA  - ru
ID  - DM_1997_9_1_a2
ER  - 
%0 Journal Article
%A E. E. D'yakonova
%T A branching process with migration in a random environment
%J Diskretnaya Matematika
%D 1997
%P 30-42
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_1_a2/
%G ru
%F DM_1997_9_1_a2
E. E. D'yakonova. A branching process with migration in a random environment. Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/DM_1997_9_1_a2/