On the asymptotics of moments of the number of nonappearing $s$-chains
Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 12-29
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we investigate the asymptotic behaviour of the number $\mu_0(B)$
of the $s$-tuples from the set
$B\subset\{(i_1\dots\, i_s)\colon 1\le i_k\le N,\ k=1,\dots,s\}$
which do not occur in the polynomial scheme with outcomes
$1,2,\dots,N$. We assume that $s$ is fixed, and the number of trials
and the outcome probabilities lie in the central domain.
We give asymptotic formulae for $\mathsf E\mu_0(B)$,
$\mathsf E\mu_0(B)(\mu_0(B)-1)$ and $\mathsf D\mu_0(B)$.
For a wide class of the sets $B$, we establish the asymptotic
normality of $\mu_0(B)$.
This work was supported by the Russian Foundation for Basic Research,
grant 96-01-00531.
@article{DM_1997_9_1_a1,
author = {M. I. Tikhomirova and V. P. Chistyakov},
title = {On the asymptotics of moments of the number of nonappearing $s$-chains},
journal = {Diskretnaya Matematika},
pages = {12--29},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_1_a1/}
}
M. I. Tikhomirova; V. P. Chistyakov. On the asymptotics of moments of the number of nonappearing $s$-chains. Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 12-29. http://geodesic.mathdoc.fr/item/DM_1997_9_1_a1/