Probabilities of extinction of subcritical multitype branching processes that are bounded from below
Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial multitype Galton–Watson branching process $$ \mu(t)=(\mu_1(t),\dots,\mu_m(t)), \qquad t=0,1,2,\dots, $$ generates a bounded from below branching process if at the moment when $\mu(t)$ enters some finite set $S$ the process stops. We study a bounded from below subcritical Galton–Watson branching process $\xi(t)=(\xi_1(t),\dots,\xi_m(t))$ with $m$ types of particles $T_1,\dots,T_m$ whose absorbing states form a set $S=\{0,e(j_1),\dots,e(j_{m_1})\}$, where $e(j)=(\delta_{j1},\dots,\delta_{jm})$, $1\le m_1\le m$, and 0 is the zero vector. It is shown that $$ q_j^n=\lim_{t\to\infty}\mathsf P\{\xi(t)=e(j)\mid \xi(0)=n\}, $$ where $n=(n_1,\dots,n_m)$, converges, as $\bar n=n_1+\ldots+n_m\to\infty$ and $n_i/\bar n\to a_i$, to some periodic with period 1 function of $\log_{1/R}\bar n$, where $R1$ is the Perron root of the matrix of the mathematical expectations of the initial branching process. This work was supported by the Russian Foundation for Basic Research, grant 96–01–00338, and INTAS–RFBR 95-0099.
@article{DM_1997_9_1_a0,
     author = {B. A. Sevast'yanov},
     title = {Probabilities of extinction of subcritical multitype branching processes that are bounded from below},
     journal = {Diskretnaya Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_1_a0/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
TI  - Probabilities of extinction of subcritical multitype branching processes that are bounded from below
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 3
EP  - 11
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_1_a0/
LA  - ru
ID  - DM_1997_9_1_a0
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%T Probabilities of extinction of subcritical multitype branching processes that are bounded from below
%J Diskretnaya Matematika
%D 1997
%P 3-11
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_1_a0/
%G ru
%F DM_1997_9_1_a0
B. A. Sevast'yanov. Probabilities of extinction of subcritical multitype branching processes that are bounded from below. Diskretnaya Matematika, Tome 9 (1997) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/DM_1997_9_1_a0/