On the decidability of the completeness problem for special systems of automata functions
Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 79-91
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider systems of automaton functions of the form $M = \Phi \cup \nu $, where $ \Phi $ is a Post class and $\nu$ is a finite system of automaton functions. We prove that if $ \Phi \in\{ M,D,C,F^2\}$, then the completeness and $A$-completeness problems for the system $M$ are algorithmically decidable.The work was supported by the Russian Foundation for Basic Research, Grant 95-01-01102.
@article{DM_1996_8_4_a6,
author = {D. N. Babin},
title = {On the decidability of the completeness problem for special systems of automata functions},
journal = {Diskretnaya Matematika},
pages = {79--91},
year = {1996},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1996_8_4_a6/}
}
D. N. Babin. On the decidability of the completeness problem for special systems of automata functions. Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 79-91. http://geodesic.mathdoc.fr/item/DM_1996_8_4_a6/