On the decidability of the completeness problem for special systems of automata functions
Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 79-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of automaton functions of the form $M = \Phi \cup \nu $, where $ \Phi $ is a Post class and $\nu$ is a finite system of automaton functions. We prove that if $ \Phi \in\{ M,D,C,F^2\}$, then the completeness and $A$-completeness problems for the system $M$ are algorithmically decidable.The work was supported by the Russian Foundation for Basic Research, Grant 95-01-01102.
@article{DM_1996_8_4_a6,
     author = {D. N. Babin},
     title = {On the decidability of the completeness problem for special systems of automata functions},
     journal = {Diskretnaya Matematika},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_4_a6/}
}
TY  - JOUR
AU  - D. N. Babin
TI  - On the decidability of the completeness problem for special systems of automata functions
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 79
EP  - 91
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_4_a6/
LA  - ru
ID  - DM_1996_8_4_a6
ER  - 
%0 Journal Article
%A D. N. Babin
%T On the decidability of the completeness problem for special systems of automata functions
%J Diskretnaya Matematika
%D 1996
%P 79-91
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_4_a6/
%G ru
%F DM_1996_8_4_a6
D. N. Babin. On the decidability of the completeness problem for special systems of automata functions. Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 79-91. http://geodesic.mathdoc.fr/item/DM_1996_8_4_a6/