On simple universal mosaic homogeneous structures
Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 134-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of homogeneous mosaic structures as an extension of the notion of homogeneous structures. We consider the problem of modelling the functioning of one mosaic homogeneous structure with the help of another mosaic structure. The proof of universality (i.e., the possibility of modelling all corresponding structures with the help of a given structure) of some mosaic homogeneous structures with triangular, square, and hexagonal cells is given. In the first case we consider a structure with three states, and in the two remaining cases we consider two structures with two and three states.
@article{DM_1996_8_4_a10,
     author = {A. Dumov},
     title = {On simple universal mosaic homogeneous structures},
     journal = {Diskretnaya Matematika},
     pages = {134--142},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_4_a10/}
}
TY  - JOUR
AU  - A. Dumov
TI  - On simple universal mosaic homogeneous structures
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 134
EP  - 142
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_4_a10/
LA  - ru
ID  - DM_1996_8_4_a10
ER  - 
%0 Journal Article
%A A. Dumov
%T On simple universal mosaic homogeneous structures
%J Diskretnaya Matematika
%D 1996
%P 134-142
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_4_a10/
%G ru
%F DM_1996_8_4_a10
A. Dumov. On simple universal mosaic homogeneous structures. Diskretnaya Matematika, Tome 8 (1996) no. 4, pp. 134-142. http://geodesic.mathdoc.fr/item/DM_1996_8_4_a10/