Limit theorems for large deviations of sums of independent not necessarily identically distributed lattice random vectors
Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 47-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate the probabilities of large deviations of sums of independent lattice random vectors which take values from the $k$-dimensional Euclidean space and may be not identically distributed. Under the hypothesis that the Cramér condition in the lattice case is satisfied, we formulate a local limit theorem and prove an integral limit theorem for some class of convex Borel sets.
@article{DM_1996_8_3_a4,
     author = {K. V. Petrovskii},
     title = {Limit theorems for large deviations of sums of independent not necessarily identically distributed lattice random vectors},
     journal = {Diskretnaya Matematika},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_3_a4/}
}
TY  - JOUR
AU  - K. V. Petrovskii
TI  - Limit theorems for large deviations of sums of independent not necessarily identically distributed lattice random vectors
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 47
EP  - 64
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_3_a4/
LA  - ru
ID  - DM_1996_8_3_a4
ER  - 
%0 Journal Article
%A K. V. Petrovskii
%T Limit theorems for large deviations of sums of independent not necessarily identically distributed lattice random vectors
%J Diskretnaya Matematika
%D 1996
%P 47-64
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_3_a4/
%G ru
%F DM_1996_8_3_a4
K. V. Petrovskii. Limit theorems for large deviations of sums of independent not necessarily identically distributed lattice random vectors. Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 47-64. http://geodesic.mathdoc.fr/item/DM_1996_8_3_a4/