Multiple packings and coverings of a sphere
Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 148-160
Cet article a éte moissonné depuis la source Math-Net.Ru
We reveal some relations between multiple packings and coverings of the $(n-1)$-dimensional unit sphere in $E^n$, $n\ge 4$, by a given number of spherical caps. We give estimates of the radii of those caps and consider several extremal cases of multiple packings and coverings of the sphere. Basing on minimaximin models, we suggest algorithms of numerical optimization of multiple packings and coverings of the sphere. A criterion whether or not a point belongs to a convex polygon in $E^n$, $n\ge 2$, is suggested.
@article{DM_1996_8_3_a11,
author = {Sh. I. Galiev},
title = {Multiple packings and coverings of a sphere},
journal = {Diskretnaya Matematika},
pages = {148--160},
year = {1996},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1996_8_3_a11/}
}
Sh. I. Galiev. Multiple packings and coverings of a sphere. Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 148-160. http://geodesic.mathdoc.fr/item/DM_1996_8_3_a11/