Multiple packings and coverings of a sphere
Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 148-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

We reveal some relations between multiple packings and coverings of the $(n-1)$-dimensional unit sphere in $E^n$, $n\ge 4$, by a given number of spherical caps. We give estimates of the radii of those caps and consider several extremal cases of multiple packings and coverings of the sphere. Basing on minimaximin models, we suggest algorithms of numerical optimization of multiple packings and coverings of the sphere. A criterion whether or not a point belongs to a convex polygon in $E^n$, $n\ge 2$, is suggested.
@article{DM_1996_8_3_a11,
     author = {Sh. I. Galiev},
     title = {Multiple packings and coverings of a sphere},
     journal = {Diskretnaya Matematika},
     pages = {148--160},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_3_a11/}
}
TY  - JOUR
AU  - Sh. I. Galiev
TI  - Multiple packings and coverings of a sphere
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 148
EP  - 160
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_3_a11/
LA  - ru
ID  - DM_1996_8_3_a11
ER  - 
%0 Journal Article
%A Sh. I. Galiev
%T Multiple packings and coverings of a sphere
%J Diskretnaya Matematika
%D 1996
%P 148-160
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_3_a11/
%G ru
%F DM_1996_8_3_a11
Sh. I. Galiev. Multiple packings and coverings of a sphere. Diskretnaya Matematika, Tome 8 (1996) no. 3, pp. 148-160. http://geodesic.mathdoc.fr/item/DM_1996_8_3_a11/