Search problems on graphs of regular polyhedra
Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 108-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $n$-search number of a graph which is defined as the minimal number of pursuers needed to catch a moving object on a connected graph provided that there are no constraints on their velocity; $n$ characterizes the required closeness of the pursuers to the evader. We give the $n$-search numbers for the graphs of all regular polyhedra.
@article{DM_1996_8_2_a7,
     author = {N. N. Petrov},
     title = {Search problems on graphs of regular polyhedra},
     journal = {Diskretnaya Matematika},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_2_a7/}
}
TY  - JOUR
AU  - N. N. Petrov
TI  - Search problems on graphs of regular polyhedra
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 108
EP  - 116
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_2_a7/
LA  - ru
ID  - DM_1996_8_2_a7
ER  - 
%0 Journal Article
%A N. N. Petrov
%T Search problems on graphs of regular polyhedra
%J Diskretnaya Matematika
%D 1996
%P 108-116
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_2_a7/
%G ru
%F DM_1996_8_2_a7
N. N. Petrov. Search problems on graphs of regular polyhedra. Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 108-116. http://geodesic.mathdoc.fr/item/DM_1996_8_2_a7/