On vector invariants of the symmetric group
Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 48-62
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of this paper is to give a proof of the results
announced by the author [7] in 1982 on the algebraic independence over
a field $k$ of any non-degenerate system of $mn$ distinct basis
invariants in the ring
$k[x_{11}, \dots ,x_{1n}; \dots ; x_{m1}, \dots , x_{mn}]$ with
respect to the symmetric group $G=S_{n}$. The result of this paper can be
extended to the case of an arbitrary finite group.The work was partially supported by the Russian Foundation for Basic Research,
Grant 94–01–01206–a.
@article{DM_1996_8_2_a3,
author = {S. A. Stepanov},
title = {On vector invariants of the symmetric group},
journal = {Diskretnaya Matematika},
pages = {48--62},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1996_8_2_a3/}
}
S. A. Stepanov. On vector invariants of the symmetric group. Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 48-62. http://geodesic.mathdoc.fr/item/DM_1996_8_2_a3/