On vector invariants of the symmetric group
Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 48-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to give a proof of the results announced by the author [7] in 1982 on the algebraic independence over a field $k$ of any non-degenerate system of $mn$ distinct basis invariants in the ring $k[x_{11}, \dots ,x_{1n}; \dots ; x_{m1}, \dots , x_{mn}]$ with respect to the symmetric group $G=S_{n}$. The result of this paper can be extended to the case of an arbitrary finite group.The work was partially supported by the Russian Foundation for Basic Research, Grant 94–01–01206–a.
@article{DM_1996_8_2_a3,
     author = {S. A. Stepanov},
     title = {On vector invariants of the symmetric group},
     journal = {Diskretnaya Matematika},
     pages = {48--62},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_2_a3/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - On vector invariants of the symmetric group
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 48
EP  - 62
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_2_a3/
LA  - ru
ID  - DM_1996_8_2_a3
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T On vector invariants of the symmetric group
%J Diskretnaya Matematika
%D 1996
%P 48-62
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_2_a3/
%G ru
%F DM_1996_8_2_a3
S. A. Stepanov. On vector invariants of the symmetric group. Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 48-62. http://geodesic.mathdoc.fr/item/DM_1996_8_2_a3/