Limit distribution of the probabilities of the permanent of a random matrix in the field $\operatorname{GF}(p)$
Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the permanent $\per(A_{nm})$ of a random $n\times m$ matrix $A_{nm}$ with elements from $\GF(p)$ and independent rows has the limit distribution of the form \[ p_k = \lim_{n\to\infty} \P\{\per(A_{nm}) = k\} = \rho_m\delta_{k0} + (1-\rho_m)/p, \qquad k=0,1,2,\ldots,p-1, \] where $\delta_{k0}$ is Kronecker's symbol. This distribution for each $m$ coincides with the probability distribution of some function of independent random variables uniformly distributed on $\GF(p)$.This work was supported by the Russian Foundation of Basic Research, Grant 93–011–1443.
@article{DM_1996_8_2_a0,
     author = {L. A. Lyapkov and B. A. Sevast'yanov},
     title = {Limit distribution of the probabilities of the permanent of a random matrix in the field $\operatorname{GF}(p)$},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1996_8_2_a0/}
}
TY  - JOUR
AU  - L. A. Lyapkov
AU  - B. A. Sevast'yanov
TI  - Limit distribution of the probabilities of the permanent of a random matrix in the field $\operatorname{GF}(p)$
JO  - Diskretnaya Matematika
PY  - 1996
SP  - 3
EP  - 13
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1996_8_2_a0/
LA  - ru
ID  - DM_1996_8_2_a0
ER  - 
%0 Journal Article
%A L. A. Lyapkov
%A B. A. Sevast'yanov
%T Limit distribution of the probabilities of the permanent of a random matrix in the field $\operatorname{GF}(p)$
%J Diskretnaya Matematika
%D 1996
%P 3-13
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1996_8_2_a0/
%G ru
%F DM_1996_8_2_a0
L. A. Lyapkov; B. A. Sevast'yanov. Limit distribution of the probabilities of the permanent of a random matrix in the field $\operatorname{GF}(p)$. Diskretnaya Matematika, Tome 8 (1996) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_1996_8_2_a0/