On equations with subgroup constraints on solutions in free groups
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 60-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a series of problems consisting in determination for the given equation in a free group $F_n$ whether it has a solution with the first component belonging to some subgroup of $F_n$, are algorithmically unsolvable.The work is supported by the Russian Foundation for Fundamental Investigations, Grant 93–011–1552.
@article{DM_1995_7_4_a4,
     author = {V. G. Durnev},
     title = {On equations with subgroup constraints on solutions in free groups},
     journal = {Diskretnaya Matematika},
     pages = {60--67},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a4/}
}
TY  - JOUR
AU  - V. G. Durnev
TI  - On equations with subgroup constraints on solutions in free groups
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 60
EP  - 67
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_4_a4/
LA  - ru
ID  - DM_1995_7_4_a4
ER  - 
%0 Journal Article
%A V. G. Durnev
%T On equations with subgroup constraints on solutions in free groups
%J Diskretnaya Matematika
%D 1995
%P 60-67
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_4_a4/
%G ru
%F DM_1995_7_4_a4
V. G. Durnev. On equations with subgroup constraints on solutions in free groups. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 60-67. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a4/