On checking tests for a parity counter
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the circuits of functional elements realizing the Boolean function $$ f^{\oplus }_{n}(\tilde{x})=x_{1}\oplus x_{2}\oplus \ldots \oplus x_{n} $$ under arbitrary constant failures on the inputs of elements. It is proved that for such circuits the length of the complete checking test is no less than $n+1$. It is shown that there exists a circuit realizing $f^{\oplus }_{n}(\tilde{x})$ with the complete checking test of length $n+2$.
@article{DM_1995_7_4_a3,
     author = {V. G. Khakhulin},
     title = {On checking tests for a parity counter},
     journal = {Diskretnaya Matematika},
     pages = {51--59},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a3/}
}
TY  - JOUR
AU  - V. G. Khakhulin
TI  - On checking tests for a parity counter
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 51
EP  - 59
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_4_a3/
LA  - ru
ID  - DM_1995_7_4_a3
ER  - 
%0 Journal Article
%A V. G. Khakhulin
%T On checking tests for a parity counter
%J Diskretnaya Matematika
%D 1995
%P 51-59
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_4_a3/
%G ru
%F DM_1995_7_4_a3
V. G. Khakhulin. On checking tests for a parity counter. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 51-59. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a3/