On checking tests for a parity counter
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 51-59
We consider the circuits of functional elements realizing the Boolean function $$ f^{\oplus }_{n}(\tilde{x})=x_{1}\oplus x_{2}\oplus \ldots \oplus x_{n} $$ under arbitrary constant failures on the inputs of elements. It is proved that for such circuits the length of the complete checking test is no less than $n+1$. It is shown that there exists a circuit realizing $f^{\oplus }_{n}(\tilde{x})$ with the complete checking test of length $n+2$.
@article{DM_1995_7_4_a3,
author = {V. G. Khakhulin},
title = {On checking tests for a parity counter},
journal = {Diskretnaya Matematika},
pages = {51--59},
year = {1995},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a3/}
}
V. G. Khakhulin. On checking tests for a parity counter. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 51-59. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a3/