On a model of plane switching circuits
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 40-50
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a model of plane contact scheme
which takes into account the possibility
to carry out controlling actions at the contacts of circuits. For
the Shannon function $L(n)$ which characterizes the minimal area
needed to realize an arbitrary Boolean function in $n$ variables
by these schemes we obtain estimates of the form
$$
{2^{n} \over \log _{2}36} \mathbin{\scriptstyle\lesssim} L(n) \mathbin{\scriptstyle\lesssim} 2^{n}.
$$
@article{DM_1995_7_4_a2,
author = {O. A. Zadorozhnyuk and A. N. Rybko},
title = {On a model of plane switching circuits},
journal = {Diskretnaya Matematika},
pages = {40--50},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a2/}
}
O. A. Zadorozhnyuk; A. N. Rybko. On a model of plane switching circuits. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 40-50. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a2/