On a model of plane switching circuits
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 40-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a model of plane contact scheme which takes into account the possibility to carry out controlling actions at the contacts of circuits. For the Shannon function $L(n)$ which characterizes the minimal area needed to realize an arbitrary Boolean function in $n$ variables by these schemes we obtain estimates of the form $$ {2^{n} \over \log _{2}36} \mathbin{\scriptstyle\lesssim} L(n) \mathbin{\scriptstyle\lesssim} 2^{n}. $$
@article{DM_1995_7_4_a2,
     author = {O. A. Zadorozhnyuk and A. N. Rybko},
     title = {On a model of plane switching circuits},
     journal = {Diskretnaya Matematika},
     pages = {40--50},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a2/}
}
TY  - JOUR
AU  - O. A. Zadorozhnyuk
AU  - A. N. Rybko
TI  - On a model of plane switching circuits
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 40
EP  - 50
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_4_a2/
LA  - ru
ID  - DM_1995_7_4_a2
ER  - 
%0 Journal Article
%A O. A. Zadorozhnyuk
%A A. N. Rybko
%T On a model of plane switching circuits
%J Diskretnaya Matematika
%D 1995
%P 40-50
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_4_a2/
%G ru
%F DM_1995_7_4_a2
O. A. Zadorozhnyuk; A. N. Rybko. On a model of plane switching circuits. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 40-50. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a2/