Chromatic uniqueness of graphs that are homeomorphic to $K_4$
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 126-135
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a description of all chromatically unique graphs being homeomorphic to
$K_4$ which can be derived from the complete graph with four vertices by sequential
dividing only three edges. As a corollary we solve two problems stated in [4].
@article{DM_1995_7_4_a10,
author = {V. L. Mironov},
title = {Chromatic uniqueness of graphs that are homeomorphic to $K_4$},
journal = {Diskretnaya Matematika},
pages = {126--135},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a10/}
}
V. L. Mironov. Chromatic uniqueness of graphs that are homeomorphic to $K_4$. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 126-135. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a10/