Chromatic uniqueness of graphs that are homeomorphic to $K_4$
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 126-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of all chromatically unique graphs being homeomorphic to $K_4$ which can be derived from the complete graph with four vertices by sequential dividing only three edges. As a corollary we solve two problems stated in [4].
@article{DM_1995_7_4_a10,
     author = {V. L. Mironov},
     title = {Chromatic uniqueness of graphs that are homeomorphic to $K_4$},
     journal = {Diskretnaya Matematika},
     pages = {126--135},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a10/}
}
TY  - JOUR
AU  - V. L. Mironov
TI  - Chromatic uniqueness of graphs that are homeomorphic to $K_4$
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 126
EP  - 135
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_4_a10/
LA  - ru
ID  - DM_1995_7_4_a10
ER  - 
%0 Journal Article
%A V. L. Mironov
%T Chromatic uniqueness of graphs that are homeomorphic to $K_4$
%J Diskretnaya Matematika
%D 1995
%P 126-135
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_4_a10/
%G ru
%F DM_1995_7_4_a10
V. L. Mironov. Chromatic uniqueness of graphs that are homeomorphic to $K_4$. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 126-135. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a10/