Coverings of a sphere, and extremal properties of orthogonal polynomials
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a method of covering a multidimensional sphere by spherical caps based on spherical designs. The following extremal problem is solved: for which greatest $\eta$ a polynomial over the Gegenbauer system with the zero coefficient equal to $0$ is non-negative on $[-1;\eta]$?
@article{DM_1995_7_3_a7,
     author = {V. A. Yudin},
     title = {Coverings of a sphere, and extremal properties of orthogonal polynomials},
     journal = {Diskretnaya Matematika},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a7/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - Coverings of a sphere, and extremal properties of orthogonal polynomials
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 81
EP  - 88
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_3_a7/
LA  - ru
ID  - DM_1995_7_3_a7
ER  - 
%0 Journal Article
%A V. A. Yudin
%T Coverings of a sphere, and extremal properties of orthogonal polynomials
%J Diskretnaya Matematika
%D 1995
%P 81-88
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_3_a7/
%G ru
%F DM_1995_7_3_a7
V. A. Yudin. Coverings of a sphere, and extremal properties of orthogonal polynomials. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 81-88. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a7/