On the number of ordered pairs of $l$-balanced sets of length $n$
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 146-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of ordered pairs of $l$-balanced binary vectors of length $n$. This notion characterizes the closeness of the pair of vectors in a natural way. We give exact and asymptotic formulae for the cardinality of the set of all ordered pairs of $l$-balanced vectors of length $n$.This work is supported by the Russian Foundation for Fundamental Investigations, grant 93–01–1527.
@article{DM_1995_7_3_a12,
     author = {Yu. V. Tarannikov},
     title = {On the number of ordered pairs of $l$-balanced sets of length $n$},
     journal = {Diskretnaya Matematika},
     pages = {146--156},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a12/}
}
TY  - JOUR
AU  - Yu. V. Tarannikov
TI  - On the number of ordered pairs of $l$-balanced sets of length $n$
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 146
EP  - 156
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_3_a12/
LA  - ru
ID  - DM_1995_7_3_a12
ER  - 
%0 Journal Article
%A Yu. V. Tarannikov
%T On the number of ordered pairs of $l$-balanced sets of length $n$
%J Diskretnaya Matematika
%D 1995
%P 146-156
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_3_a12/
%G ru
%F DM_1995_7_3_a12
Yu. V. Tarannikov. On the number of ordered pairs of $l$-balanced sets of length $n$. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 146-156. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a12/