On a strongly regular graph with the parameters $(64,18,2,6)$
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 121-128
We consider non-directed graphs without loops and multiple edges. A strongly regular graph with parameters $(v,k,\lambda,\mu)$ is the graph with $v$ vertices such that for any vertex $a$ its neighbourhood $[a]$ consists of $k$ vertices and any edge is adjacent to exactly $\lambda$ common vertices and any non-edge is adjacent to exactly $\mu$ vertices. We prove that the strongly regular graph with parameters $(64,18,2,6)$ is geometric.
@article{DM_1995_7_3_a10,
author = {A. A. Makhnev},
title = {On a strongly regular graph with the parameters $(64,18,2,6)$},
journal = {Diskretnaya Matematika},
pages = {121--128},
year = {1995},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a10/}
}
A. A. Makhnev. On a strongly regular graph with the parameters $(64,18,2,6)$. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 121-128. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a10/