On a strongly regular graph with the parameters $(64,18,2,6)$
Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 121-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-directed graphs without loops and multiple edges. A strongly regular graph with parameters $(v,k,\lambda,\mu)$ is the graph with $v$ vertices such that for any vertex $a$ its neighbourhood $[a]$ consists of $k$ vertices and any edge is adjacent to exactly $\lambda$ common vertices and any non-edge is adjacent to exactly $\mu$ vertices. We prove that the strongly regular graph with parameters $(64,18,2,6)$ is geometric.
@article{DM_1995_7_3_a10,
     author = {A. A. Makhnev},
     title = {On a strongly regular graph with the parameters $(64,18,2,6)$},
     journal = {Diskretnaya Matematika},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_3_a10/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On a strongly regular graph with the parameters $(64,18,2,6)$
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 121
EP  - 128
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_3_a10/
LA  - ru
ID  - DM_1995_7_3_a10
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On a strongly regular graph with the parameters $(64,18,2,6)$
%J Diskretnaya Matematika
%D 1995
%P 121-128
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_3_a10/
%G ru
%F DM_1995_7_3_a10
A. A. Makhnev. On a strongly regular graph with the parameters $(64,18,2,6)$. Diskretnaya Matematika, Tome 7 (1995) no. 3, pp. 121-128. http://geodesic.mathdoc.fr/item/DM_1995_7_3_a10/