A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements
Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 90-101
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H_R(n,r)$ be equal to the number of $n\times n$ matrices with non-negative integer elements such that all row sums and all column sums are equal to $r$ and all elements with indices from a set $R$ are equal to zero. We investigate the properties of the function $H_R(n,r)$ and give a combinatorial interpretation of the obtained results.
@article{DM_1993_5_3_a7,
author = {E. E. Marenich},
title = {A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements},
journal = {Diskretnaya Matematika},
pages = {90--101},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1993_5_3_a7/}
}
TY - JOUR AU - E. E. Marenich TI - A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements JO - Diskretnaya Matematika PY - 1993 SP - 90 EP - 101 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1993_5_3_a7/ LA - ru ID - DM_1993_5_3_a7 ER -
E. E. Marenich. A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements. Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 90-101. http://geodesic.mathdoc.fr/item/DM_1993_5_3_a7/