A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements
Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 90-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H_R(n,r)$ be equal to the number of $n\times n$ matrices with non-negative integer elements such that all row sums and all column sums are equal to $r$ and all elements with indices from a set $R$ are equal to zero. We investigate the properties of the function $H_R(n,r)$ and give a combinatorial interpretation of the obtained results.
@article{DM_1993_5_3_a7,
     author = {E. E. Marenich},
     title = {A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements},
     journal = {Diskretnaya Matematika},
     pages = {90--101},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1993_5_3_a7/}
}
TY  - JOUR
AU  - E. E. Marenich
TI  - A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements
JO  - Diskretnaya Matematika
PY  - 1993
SP  - 90
EP  - 101
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1993_5_3_a7/
LA  - ru
ID  - DM_1993_5_3_a7
ER  - 
%0 Journal Article
%A E. E. Marenich
%T A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements
%J Diskretnaya Matematika
%D 1993
%P 90-101
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1993_5_3_a7/
%G ru
%F DM_1993_5_3_a7
E. E. Marenich. A~combinatorial approach to the enumeration of doubly stochastic square matrices with nonnegative integer elements. Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 90-101. http://geodesic.mathdoc.fr/item/DM_1993_5_3_a7/