A threshold function with the Shannon effect for Boolean functions with respect to a symmetric group
Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 64-75
We prove that if $A$ is the property of a Boolean function $f(x_1,\dots,x_n)$ of weight $r$ consisting in the fact that $f$ has a trivial inertia group with respect to the group $S_n$, then the function $A(n)=\ln n$ is a threshold function for property $A$.
@article{DM_1993_5_3_a4,
author = {O. V. Denisov},
title = {A~threshold function with the {Shannon} effect for {Boolean} functions with respect to a~symmetric group},
journal = {Diskretnaya Matematika},
pages = {64--75},
year = {1993},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1993_5_3_a4/}
}
O. V. Denisov. A threshold function with the Shannon effect for Boolean functions with respect to a symmetric group. Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 64-75. http://geodesic.mathdoc.fr/item/DM_1993_5_3_a4/