The problem of discriminating hypotheses on the parameters of a~generalized moving summation process
Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 44-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a random process $$\chi_t=L(x^1_t, x^1_{t+1},\dots, x^1_{t+n_1-1},\dots, x^r_t,\dots,x^r_{t+n_r-1}),\quad t=1, \dots,T,$$ where $x^i_\tau$, $i=1,\dots,r$, $\tau=1,2,\dots$, are independent, identically distributed random variables, $x^i_\tau\in\{0,1\}$, $P\{x^i_\tau=0\}=(1+\theta)/2$, $L$ is a linear Boolean function. It is proved that the lognormal distribution is the limit distribution of the likelihood ratio statistic for testing a simple hypothesis $\theta=\delta>0$ on the basis of the sample $\chi_t$, $t=1,\dots,T$, against a simple hypothesis $\theta=0$ as $\delta\to0$. Algorithms for calculating the parameters of the function $L$, which determine the value of $T$ sufficient to distinguish the hypotheses with errors tending to zero, are presented. It is shown that if $r\geqslant 2$, $\sum_{i=1}^r n_i\to\infty$, then the sufficient value of $T$ is no less than $\delta^{2k(L)}$ in order, where $k(L)=O(n/\log n)$ depends on $L$.
@article{DM_1993_5_3_a3,
     author = {G. V. Proskurin},
     title = {The problem of discriminating hypotheses on the parameters of a~generalized moving summation process},
     journal = {Diskretnaya Matematika},
     pages = {44--63},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1993_5_3_a3/}
}
TY  - JOUR
AU  - G. V. Proskurin
TI  - The problem of discriminating hypotheses on the parameters of a~generalized moving summation process
JO  - Diskretnaya Matematika
PY  - 1993
SP  - 44
EP  - 63
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1993_5_3_a3/
LA  - ru
ID  - DM_1993_5_3_a3
ER  - 
%0 Journal Article
%A G. V. Proskurin
%T The problem of discriminating hypotheses on the parameters of a~generalized moving summation process
%J Diskretnaya Matematika
%D 1993
%P 44-63
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1993_5_3_a3/
%G ru
%F DM_1993_5_3_a3
G. V. Proskurin. The problem of discriminating hypotheses on the parameters of a~generalized moving summation process. Diskretnaya Matematika, Tome 5 (1993) no. 3, pp. 44-63. http://geodesic.mathdoc.fr/item/DM_1993_5_3_a3/