Complexity of Boolean functions in the class of canonical polarized polynomials
Diskretnaya Matematika, Tome 5 (1993) no. 2, pp. 111-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

A canonical polarized polynomial of a Boolean function $F$ in $n$ variables is a polynomial where one part of the variables of the function $F$ enters the summands only with negation and the second part only without negation. By the complexity of function $F$ in a class of canonical polarized polynomials $l(F)$ we mean the minimum length (number of summands) among all the $2^n$ canonical polarized polynomials of $F$. The Shannon function $L(n)$ for estimating the complexity of functions in $n$ variables in the class of canonical polarized polynomials is defined as $L(n)=\max l(F)$, where the maximum is taken over all functions $F$ in $n$ variables. Here we present the results of investigations of the function $L(n)$.
@article{DM_1993_5_2_a8,
     author = {V. P. Suprun},
     title = {Complexity of {Boolean} functions in the class of canonical polarized polynomials},
     journal = {Diskretnaya Matematika},
     pages = {111--115},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1993_5_2_a8/}
}
TY  - JOUR
AU  - V. P. Suprun
TI  - Complexity of Boolean functions in the class of canonical polarized polynomials
JO  - Diskretnaya Matematika
PY  - 1993
SP  - 111
EP  - 115
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1993_5_2_a8/
LA  - ru
ID  - DM_1993_5_2_a8
ER  - 
%0 Journal Article
%A V. P. Suprun
%T Complexity of Boolean functions in the class of canonical polarized polynomials
%J Diskretnaya Matematika
%D 1993
%P 111-115
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1993_5_2_a8/
%G ru
%F DM_1993_5_2_a8
V. P. Suprun. Complexity of Boolean functions in the class of canonical polarized polynomials. Diskretnaya Matematika, Tome 5 (1993) no. 2, pp. 111-115. http://geodesic.mathdoc.fr/item/DM_1993_5_2_a8/