On the $id$-decompositions of the class~$P_k$ over precomplete classes
Diskretnaya Matematika, Tome 5 (1993) no. 2, pp. 98-110
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a representation of functions $f(x_1,\cdots,x_n)$ in $P_k$ in the form
$$
g(x_1,\dots,x_m,F^1_2,\dots,F^1_m,\dots,F^m_1,\dots,F^m_{m-1}),
$$
where $2\le m\le n$ and $F^i_j=f(x_1,\dots,x_{j-1},x_i,x_{j+1},\dots,x_n)$ for $i\ne j$. We investigate the possibility of such representations with $g$ belonging to classes that are precomplete in $P_k$. We give upper bounds on the parameter $m$ in the representation.
@article{DM_1993_5_2_a7,
author = {S. S. Marchenkov},
title = {On the $id$-decompositions of the class~$P_k$ over precomplete classes},
journal = {Diskretnaya Matematika},
pages = {98--110},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1993_5_2_a7/}
}
S. S. Marchenkov. On the $id$-decompositions of the class~$P_k$ over precomplete classes. Diskretnaya Matematika, Tome 5 (1993) no. 2, pp. 98-110. http://geodesic.mathdoc.fr/item/DM_1993_5_2_a7/