Edge hypergraphs
Diskretnaya Matematika, Tome 5 (1993) no. 1, pp. 112-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of line hypergraph is introduced. It is an immediate generalization of two well-known objects: the line graph and the dual hypergraph. We obtain various characterizations of line hypergraphs; we also obtain a generalization of Whitney's theorem. The NP-completeness of the problem of determining whether a given graph is the line graph of a hypergraph of rank $r>2$ is proved.
@article{DM_1993_5_1_a6,
     author = {A. G. Levin and R. I. Tyshkevich},
     title = {Edge hypergraphs},
     journal = {Diskretnaya Matematika},
     pages = {112--129},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1993_5_1_a6/}
}
TY  - JOUR
AU  - A. G. Levin
AU  - R. I. Tyshkevich
TI  - Edge hypergraphs
JO  - Diskretnaya Matematika
PY  - 1993
SP  - 112
EP  - 129
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1993_5_1_a6/
LA  - ru
ID  - DM_1993_5_1_a6
ER  - 
%0 Journal Article
%A A. G. Levin
%A R. I. Tyshkevich
%T Edge hypergraphs
%J Diskretnaya Matematika
%D 1993
%P 112-129
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1993_5_1_a6/
%G ru
%F DM_1993_5_1_a6
A. G. Levin; R. I. Tyshkevich. Edge hypergraphs. Diskretnaya Matematika, Tome 5 (1993) no. 1, pp. 112-129. http://geodesic.mathdoc.fr/item/DM_1993_5_1_a6/