Edge hypergraphs
Diskretnaya Matematika, Tome 5 (1993) no. 1, pp. 112-129
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of line hypergraph is introduced. It is an immediate generalization of two well-known objects: the line graph and the dual hypergraph. We obtain various characterizations of line hypergraphs; we also obtain a generalization of Whitney's theorem. The NP-completeness of the problem of determining whether a given graph is the line graph of a hypergraph of rank $r>2$ is proved.
@article{DM_1993_5_1_a6,
author = {A. G. Levin and R. I. Tyshkevich},
title = {Edge hypergraphs},
journal = {Diskretnaya Matematika},
pages = {112--129},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1993_5_1_a6/}
}
A. G. Levin; R. I. Tyshkevich. Edge hypergraphs. Diskretnaya Matematika, Tome 5 (1993) no. 1, pp. 112-129. http://geodesic.mathdoc.fr/item/DM_1993_5_1_a6/