Transportation polytopes with a~minimal number of $k$-faces
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 108-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria are suggested for a non-degenerate transportation polytope with a given number of faces (of maximum dimension) for belonging to the class of polytopes with minimum number of $k$-faces of all dimensions (beginning with zero) are suggested. A formula for this number is obtained.
@article{DM_1992_4_3_a8,
     author = {M. K. Kravtsov},
     title = {Transportation polytopes with a~minimal number of $k$-faces},
     journal = {Diskretnaya Matematika},
     pages = {108--117},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a8/}
}
TY  - JOUR
AU  - M. K. Kravtsov
TI  - Transportation polytopes with a~minimal number of $k$-faces
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 108
EP  - 117
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_3_a8/
LA  - ru
ID  - DM_1992_4_3_a8
ER  - 
%0 Journal Article
%A M. K. Kravtsov
%T Transportation polytopes with a~minimal number of $k$-faces
%J Diskretnaya Matematika
%D 1992
%P 108-117
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_3_a8/
%G ru
%F DM_1992_4_3_a8
M. K. Kravtsov. Transportation polytopes with a~minimal number of $k$-faces. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 108-117. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a8/