An asymptotic formula for the number of asymmetric graphs
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 101-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general formula giving an asymptotic expansion for the number $N(n)$ of identity graphs with $n$ vertices, as $n\to\infty$, is obtained. Two terms of this asymptotic expansion are given in an explicit form. The obtained formula estimates the rate of convergence in the Pólya effect [F. Harary and E. M. Palmer, Graphical enumeration (1973; Zbl 0266.05108)] that almost all undirected graphs have the trivial automorphism group as $n\to\infty$.
@article{DM_1992_4_3_a7,
     author = {A. S. Ambrosimov},
     title = {An asymptotic formula for the number of asymmetric graphs},
     journal = {Diskretnaya Matematika},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a7/}
}
TY  - JOUR
AU  - A. S. Ambrosimov
TI  - An asymptotic formula for the number of asymmetric graphs
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 101
EP  - 107
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_3_a7/
LA  - ru
ID  - DM_1992_4_3_a7
ER  - 
%0 Journal Article
%A A. S. Ambrosimov
%T An asymptotic formula for the number of asymmetric graphs
%J Diskretnaya Matematika
%D 1992
%P 101-107
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_3_a7/
%G ru
%F DM_1992_4_3_a7
A. S. Ambrosimov. An asymptotic formula for the number of asymmetric graphs. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 101-107. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a7/