An asymptotic formula for the number of asymmetric graphs
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 101-107
Cet article a éte moissonné depuis la source Math-Net.Ru
A general formula giving an asymptotic expansion for the number $N(n)$ of identity graphs with $n$ vertices, as $n\to\infty$, is obtained. Two terms of this asymptotic expansion are given in an explicit form. The obtained formula estimates the rate of convergence in the Pólya effect [F. Harary and E. M. Palmer, Graphical enumeration (1973; Zbl 0266.05108)] that almost all undirected graphs have the trivial automorphism group as $n\to\infty$.
@article{DM_1992_4_3_a7,
author = {A. S. Ambrosimov},
title = {An asymptotic formula for the number of asymmetric graphs},
journal = {Diskretnaya Matematika},
pages = {101--107},
year = {1992},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a7/}
}
A. S. Ambrosimov. An asymptotic formula for the number of asymmetric graphs. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 101-107. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a7/