Random minimal coverings of sets
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of new results on the asymptotic behaviour of the number of coverings of $n$-sets as $n\to\infty$ is obtained. In particular, it is proved that the number of blocks in a random covering of an $n$-set is asymptotically normal with parameters $(2^{n-1}- 1/2,2^{n/2-1})$. Asymptotic formulae for the number of minimal coverings of an $n$-set are given; these formulae have different structures depending on the parity of $n$. It is proved that as $n\to\infty$ the number of blocks in a random minimal covering has a non-standard discrete distribution with mean $n/2$ and finite variance. The structure of this distribution depends on what values, odd or even, are taken by $n$ as $n\to\infty$. The number of elements covered exactly one time has the same limit distribution. An algorithm determining a correspondence between certain classes of partitions of $n$-sets and minimal coverings is given.
@article{DM_1992_4_3_a4,
     author = {V. N. Sachkov},
     title = {Random minimal coverings of sets},
     journal = {Diskretnaya Matematika},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a4/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Random minimal coverings of sets
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 64
EP  - 74
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_3_a4/
LA  - ru
ID  - DM_1992_4_3_a4
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Random minimal coverings of sets
%J Diskretnaya Matematika
%D 1992
%P 64-74
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_3_a4/
%G ru
%F DM_1992_4_3_a4
V. N. Sachkov. Random minimal coverings of sets. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 64-74. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a4/