$T$-partitions of quasigroups and groups
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 47-56
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce the concept of a $T$-partition of a quasigroup that generalizes various situations when the Cayley table of a quasigroup can be partitioned into smaller Latin squares. From all the $T$-partitions we identify left-regular [resp. right-regular], regular and homogeneous $T$-partitions. The $T$-partitions of each type of quasigroup form a lattice. We study the lattices of $T$-partitions of groups. In particular, we prove that any finite abelian group can be uniquely reconstructed up to isomorphism from the lattice of its left-regular [resp. right-regular] $T$-partitions.
@article{DM_1992_4_3_a2,
author = {M. M. Glukhov},
title = {$T$-partitions of quasigroups and groups},
journal = {Diskretnaya Matematika},
pages = {47--56},
year = {1992},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a2/}
}
M. M. Glukhov. $T$-partitions of quasigroups and groups. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 47-56. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a2/