On Slupecki classes in the systems $P_k\times\dots\times P_l$
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 135-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all $2^m-1$ precomplete Slupecki classes in systems of the form $P_{k_1}\times \dots\times P_{k_m}$. We prove that any minimal relation defining a precomplete class in the system $P_{k_1}\times\dots\times P_{k_m}$ is either one-based, or a multibased completely reflexive and completely symmetric relation.
@article{DM_1992_4_3_a11,
     author = {S. S. Marchenkov},
     title = {On {Slupecki} classes in the systems $P_k\times\dots\times P_l$},
     journal = {Diskretnaya Matematika},
     pages = {135--148},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a11/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On Slupecki classes in the systems $P_k\times\dots\times P_l$
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 135
EP  - 148
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_3_a11/
LA  - ru
ID  - DM_1992_4_3_a11
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On Slupecki classes in the systems $P_k\times\dots\times P_l$
%J Diskretnaya Matematika
%D 1992
%P 135-148
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_3_a11/
%G ru
%F DM_1992_4_3_a11
S. S. Marchenkov. On Slupecki classes in the systems $P_k\times\dots\times P_l$. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 135-148. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a11/