On Slupecki classes in the systems $P_k\times\dots\times P_l$
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 135-148
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe all $2^m-1$ precomplete Slupecki classes in systems of the form $P_{k_1}\times \dots\times P_{k_m}$. We prove that any minimal relation defining a precomplete class in the system $P_{k_1}\times\dots\times P_{k_m}$ is either one-based, or a multibased completely reflexive and completely symmetric relation.
@article{DM_1992_4_3_a11,
author = {S. S. Marchenkov},
title = {On {Slupecki} classes in the systems $P_k\times\dots\times P_l$},
journal = {Diskretnaya Matematika},
pages = {135--148},
year = {1992},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a11/}
}
S. S. Marchenkov. On Slupecki classes in the systems $P_k\times\dots\times P_l$. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 135-148. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a11/