Some classes of permutations with cycle lengths in a given set
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 128-134
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the classes $T_n$ of permutations of degree $n$ whose cycle lengths belong to a set $A\subseteq\mathbb N$, where the set $A$ is completely determined by a given regularly varying function $g(t)$ and a finite union $\Delta$ of intervals from $[0,1]$. We find the asymptotics of the number of elements of $T_n$ as $n \to\infty$. The limit theorems on the total number of cycles and the number of cycles of a fixed length in random permutations uniformly distributed on $T_n$ are proved. This paper continues the investigations we started in [ibid. 1, No. 1, 105–116 (1991; Zbl 0728.05004)].
@article{DM_1992_4_3_a10,
author = {A. L. Yakymiv},
title = {Some classes of permutations with cycle lengths in a~given set},
journal = {Diskretnaya Matematika},
pages = {128--134},
year = {1992},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a10/}
}
A. L. Yakymiv. Some classes of permutations with cycle lengths in a given set. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 128-134. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a10/