Some classes of permutations with cycle lengths in a~given set
Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 128-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the classes $T_n$ of permutations of degree $n$ whose cycle lengths belong to a set $A\subseteq\mathbb N$, where the set $A$ is completely determined by a given regularly varying function $g(t)$ and a finite union $\Delta$ of intervals from $[0,1]$. We find the asymptotics of the number of elements of $T_n$ as $n \to\infty$. The limit theorems on the total number of cycles and the number of cycles of a fixed length in random permutations uniformly distributed on $T_n$ are proved. This paper continues the investigations we started in [ibid. 1, No. 1, 105–116 (1991; Zbl 0728.05004)].
@article{DM_1992_4_3_a10,
     author = {A. L. Yakymiv},
     title = {Some classes of permutations with cycle lengths in a~given set},
     journal = {Diskretnaya Matematika},
     pages = {128--134},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_3_a10/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Some classes of permutations with cycle lengths in a~given set
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 128
EP  - 134
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_3_a10/
LA  - ru
ID  - DM_1992_4_3_a10
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Some classes of permutations with cycle lengths in a~given set
%J Diskretnaya Matematika
%D 1992
%P 128-134
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_3_a10/
%G ru
%F DM_1992_4_3_a10
A. L. Yakymiv. Some classes of permutations with cycle lengths in a~given set. Diskretnaya Matematika, Tome 4 (1992) no. 3, pp. 128-134. http://geodesic.mathdoc.fr/item/DM_1992_4_3_a10/