A recursive algorithm for decoding some subsets of first-order Reed–Muller codes
Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 130-135
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a recursive algorithm for decoding a binary code that is determined as the subset of words of a first-order Reed–Muller code given by linear Boolean functions in $n$ variables of fixed weight $r$ (the number of real variables). We show that the complexity of decoding these subsets of coded words can be estimated by the number $(r+1)\cdot2^n$ of operations of the type of the addition of two numbers, which improves the estimate $(2r+1)\cdot2^n$ already known. This algorithm for the case of decoding the subsets of even [odd] weight $r$ has complexity $n\cdot 2^{n-1}$.
@article{DM_1992_4_2_a14,
author = {A. S. Logachev},
title = {A~recursive algorithm for decoding some subsets of first-order {Reed{\textendash}Muller} codes},
journal = {Diskretnaya Matematika},
pages = {130--135},
year = {1992},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1992_4_2_a14/}
}
A. S. Logachev. A recursive algorithm for decoding some subsets of first-order Reed–Muller codes. Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 130-135. http://geodesic.mathdoc.fr/item/DM_1992_4_2_a14/