A proof of the Hirsch conjecture for a class of transportation polytopes
Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 23-31
We prove the well-known conjecture on the maximum diameter of a polytope generated by a transportation problem with constraints on the partial sums of the variables. We also establish the Hamiltonian property of the graph of any classical (two-index) transportation polytope.
@article{DM_1992_4_2_a1,
author = {M. K. Kravtsov},
title = {A~proof of the {Hirsch} conjecture for a~class of transportation polytopes},
journal = {Diskretnaya Matematika},
pages = {23--31},
year = {1992},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1992_4_2_a1/}
}
M. K. Kravtsov. A proof of the Hirsch conjecture for a class of transportation polytopes. Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 23-31. http://geodesic.mathdoc.fr/item/DM_1992_4_2_a1/