A~proof of the Hirsch conjecture for a~class of transportation polytopes
Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 23-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the well-known conjecture on the maximum diameter of a polytope generated by a transportation problem with constraints on the partial sums of the variables. We also establish the Hamiltonian property of the graph of any classical (two-index) transportation polytope.
@article{DM_1992_4_2_a1,
     author = {M. K. Kravtsov},
     title = {A~proof of the {Hirsch} conjecture for a~class of transportation polytopes},
     journal = {Diskretnaya Matematika},
     pages = {23--31},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_2_a1/}
}
TY  - JOUR
AU  - M. K. Kravtsov
TI  - A~proof of the Hirsch conjecture for a~class of transportation polytopes
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 23
EP  - 31
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_2_a1/
LA  - ru
ID  - DM_1992_4_2_a1
ER  - 
%0 Journal Article
%A M. K. Kravtsov
%T A~proof of the Hirsch conjecture for a~class of transportation polytopes
%J Diskretnaya Matematika
%D 1992
%P 23-31
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_2_a1/
%G ru
%F DM_1992_4_2_a1
M. K. Kravtsov. A~proof of the Hirsch conjecture for a~class of transportation polytopes. Diskretnaya Matematika, Tome 4 (1992) no. 2, pp. 23-31. http://geodesic.mathdoc.fr/item/DM_1992_4_2_a1/