Multi-index planar transportation polytopes with a maximum number of vertices
Diskretnaya Matematika, Tome 4 (1992) no. 1, pp. 3-18
Using the methods of combinatorial topology we establish a criterion for a polytope to belong to the class of multi-index planar transportation polytopes with a maximum number of vertices. We also obtain a number of results concerning the structure of polytopes of this class.
@article{DM_1992_4_1_a0,
author = {V. A. Emelichev and M. K. Kravtsov and A. P. Krachkovskii},
title = {Multi-index planar transportation polytopes with a~maximum number of vertices},
journal = {Diskretnaya Matematika},
pages = {3--18},
year = {1992},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1992_4_1_a0/}
}
TY - JOUR AU - V. A. Emelichev AU - M. K. Kravtsov AU - A. P. Krachkovskii TI - Multi-index planar transportation polytopes with a maximum number of vertices JO - Diskretnaya Matematika PY - 1992 SP - 3 EP - 18 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/DM_1992_4_1_a0/ LA - ru ID - DM_1992_4_1_a0 ER -
V. A. Emelichev; M. K. Kravtsov; A. P. Krachkovskii. Multi-index planar transportation polytopes with a maximum number of vertices. Diskretnaya Matematika, Tome 4 (1992) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/DM_1992_4_1_a0/