Multi-index planar transportation polytopes with a~maximum number of vertices
Diskretnaya Matematika, Tome 4 (1992) no. 1, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the methods of combinatorial topology we establish a criterion for a polytope to belong to the class of multi-index planar transportation polytopes with a maximum number of vertices. We also obtain a number of results concerning the structure of polytopes of this class.
@article{DM_1992_4_1_a0,
     author = {V. A. Emelichev and M. K. Kravtsov and A. P. Krachkovskii},
     title = {Multi-index planar transportation polytopes with a~maximum number of vertices},
     journal = {Diskretnaya Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1992_4_1_a0/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - M. K. Kravtsov
AU  - A. P. Krachkovskii
TI  - Multi-index planar transportation polytopes with a~maximum number of vertices
JO  - Diskretnaya Matematika
PY  - 1992
SP  - 3
EP  - 18
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1992_4_1_a0/
LA  - ru
ID  - DM_1992_4_1_a0
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A M. K. Kravtsov
%A A. P. Krachkovskii
%T Multi-index planar transportation polytopes with a~maximum number of vertices
%J Diskretnaya Matematika
%D 1992
%P 3-18
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1992_4_1_a0/
%G ru
%F DM_1992_4_1_a0
V. A. Emelichev; M. K. Kravtsov; A. P. Krachkovskii. Multi-index planar transportation polytopes with a~maximum number of vertices. Diskretnaya Matematika, Tome 4 (1992) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/DM_1992_4_1_a0/