Integral limit theorems for lacunary distributions
Diskretnaya Matematika, Tome 3 (1991) no. 3, pp. 89-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an initial distribution $\{p_k\}$ we consider the family of associated distributions that are defined by the probabilities $p_k(s)=p_ke^{sk}/f(s)$, $k=0,\pm1,\cdots $, where $f(s)=\sum_kp_ke^{sk}$ and $(s_-, s_+)$ is the convergence interval of this series. Let $\eta_1(s),\cdots ,\eta_n(s)$ be independent identically distributed random variables with the distribution $\{p_k(s)\}$. We study in detail limit distributions of the sums $\eta_1(s)+\cdots +\eta_n(s)$ as $n\to\infty$ and for various $s\in(s_-, s_+)$, paying the most attention to the case $s\to s_+$.
@article{DM_1991_3_3_a8,
     author = {A. V. Nagaev},
     title = {Integral limit theorems for lacunary distributions},
     journal = {Diskretnaya Matematika},
     pages = {89--101},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1991_3_3_a8/}
}
TY  - JOUR
AU  - A. V. Nagaev
TI  - Integral limit theorems for lacunary distributions
JO  - Diskretnaya Matematika
PY  - 1991
SP  - 89
EP  - 101
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1991_3_3_a8/
LA  - ru
ID  - DM_1991_3_3_a8
ER  - 
%0 Journal Article
%A A. V. Nagaev
%T Integral limit theorems for lacunary distributions
%J Diskretnaya Matematika
%D 1991
%P 89-101
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1991_3_3_a8/
%G ru
%F DM_1991_3_3_a8
A. V. Nagaev. Integral limit theorems for lacunary distributions. Diskretnaya Matematika, Tome 3 (1991) no. 3, pp. 89-101. http://geodesic.mathdoc.fr/item/DM_1991_3_3_a8/