Vector optimization of decompositions of root trees
Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 58-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the decompositions of root trees with vector vertex weights. We study a problem on the minimization of the number of the decomposition under a vector constraint. We prove the insolvability of this problem in a class of generalized finite automata over trees containing algorithms of gradient type. We estimate the error of the automaton algorithm, present an algorithm that solves a problem with polynomially bounded time complexity, and obtain an estimate for the number of parts of the decomposition.
@article{DM_1991_3_2_a3,
     author = {A. A. Markov},
     title = {Vector optimization of decompositions of root trees},
     journal = {Diskretnaya Matematika},
     pages = {58--68},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1991_3_2_a3/}
}
TY  - JOUR
AU  - A. A. Markov
TI  - Vector optimization of decompositions of root trees
JO  - Diskretnaya Matematika
PY  - 1991
SP  - 58
EP  - 68
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1991_3_2_a3/
LA  - ru
ID  - DM_1991_3_2_a3
ER  - 
%0 Journal Article
%A A. A. Markov
%T Vector optimization of decompositions of root trees
%J Diskretnaya Matematika
%D 1991
%P 58-68
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1991_3_2_a3/
%G ru
%F DM_1991_3_2_a3
A. A. Markov. Vector optimization of decompositions of root trees. Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 58-68. http://geodesic.mathdoc.fr/item/DM_1991_3_2_a3/