Combinatorial-probability and geometric methods in threshold logic
Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 47-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating the number $N_n$ of threshold functions in $n$ variables. The following estimates, asymptotic with respect to $n$, were obtained earlier for the logarithm of this number: $n^2/2\lesssim\log_2N_n\lesssim n^2$. We prove a lemma connecting the number of regions into which the $n$-dimensional Euclidean space is partitioned by a finite set of hyperplanes, with the number of affine subspaces that are generated by the intersections of the hyperplanes. By means of this lemma we prove that for sufficiently large $n$ the inequality $\log_2N_n>n^2(1-10/\ln n)$ holds. In the same way we establish the asymptotic formula $\log_2N_n\\thicksim n^2$, $n\to\infty$. We introduce the concept of the graph of threshold functions and show the asymptotics for $\log _2N_n(M)$ for various $M$, where $N_n(M)$ is the number of threshold functions with $M$ units.
@article{DM_1991_3_2_a2,
     author = {Yu. A. Zuev},
     title = {Combinatorial-probability and geometric methods in threshold logic},
     journal = {Diskretnaya Matematika},
     pages = {47--57},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1991_3_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Zuev
TI  - Combinatorial-probability and geometric methods in threshold logic
JO  - Diskretnaya Matematika
PY  - 1991
SP  - 47
EP  - 57
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1991_3_2_a2/
LA  - ru
ID  - DM_1991_3_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Zuev
%T Combinatorial-probability and geometric methods in threshold logic
%J Diskretnaya Matematika
%D 1991
%P 47-57
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1991_3_2_a2/
%G ru
%F DM_1991_3_2_a2
Yu. A. Zuev. Combinatorial-probability and geometric methods in threshold logic. Diskretnaya Matematika, Tome 3 (1991) no. 2, pp. 47-57. http://geodesic.mathdoc.fr/item/DM_1991_3_2_a2/