Binomial moments and exponential generating functions
Diskretnaya Matematika, Tome 3 (1991) no. 1, pp. 114-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection is established between a sequence of binomial moments of random vectors and sequences of their characteristic functions or exponential generating functions. The asymptotics of these functions is found (under certain conditions). As a result of this, the properties of binomial moments are described which determine the limit distribution of the initial sequence. The results are applied to studying the distribution of the number of isolated trees in growing random graphs.
@article{DM_1991_3_1_a10,
     author = {M. N. Rokhlin},
     title = {Binomial moments and exponential generating functions},
     journal = {Diskretnaya Matematika},
     pages = {114--132},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1991_3_1_a10/}
}
TY  - JOUR
AU  - M. N. Rokhlin
TI  - Binomial moments and exponential generating functions
JO  - Diskretnaya Matematika
PY  - 1991
SP  - 114
EP  - 132
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1991_3_1_a10/
LA  - ru
ID  - DM_1991_3_1_a10
ER  - 
%0 Journal Article
%A M. N. Rokhlin
%T Binomial moments and exponential generating functions
%J Diskretnaya Matematika
%D 1991
%P 114-132
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1991_3_1_a10/
%G ru
%F DM_1991_3_1_a10
M. N. Rokhlin. Binomial moments and exponential generating functions. Diskretnaya Matematika, Tome 3 (1991) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/DM_1991_3_1_a10/