Binomial moments and exponential generating functions
Diskretnaya Matematika, Tome 3 (1991) no. 1, pp. 114-132
Voir la notice de l'article provenant de la source Math-Net.Ru
A connection is established between a sequence of binomial moments of random vectors and sequences of their characteristic functions or exponential generating functions. The asymptotics of these functions is found (under certain conditions). As a result of this, the properties of binomial moments are described which determine the limit distribution of the initial sequence. The results are applied to studying the distribution of the number of isolated trees in growing random graphs.
@article{DM_1991_3_1_a10,
author = {M. N. Rokhlin},
title = {Binomial moments and exponential generating functions},
journal = {Diskretnaya Matematika},
pages = {114--132},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1991_3_1_a10/}
}
M. N. Rokhlin. Binomial moments and exponential generating functions. Diskretnaya Matematika, Tome 3 (1991) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/DM_1991_3_1_a10/