Perfect codes in the metric of deletions and insertions
Diskretnaya Matematika, Tome 3 (1991) no. 1, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of packing and covering a metric space $B^n_q$ that consists of $q$-ary words of length $n$ and is provided with a metric of deletions and insertions. For any $n=1,2,\dots $ we present partitions of the space $B^n_2$ and the set of permutations $S_n$ $(S_n\subset B^n_n)$ into perfect codes with correction of individual deletions. In connection with a problem of constructing ordered codes with correction of $s$ deletions we formulate a problem of constructing ordered Steiner systems and give a solution of this problem for certain values of the parameters. We construct codes complete in $B^n_q$ with correction of individual deletions for $n=3$ and any $q$, and also for $n=4$ and any even $q$. We find the asymptotic behavior of the maximum cardinality of the code in $B^n_q$ with correction of individual deletions as $q/n\to\infty$.
@article{DM_1991_3_1_a0,
     author = {V. I. Levenshtein},
     title = {Perfect codes in the metric of deletions and insertions},
     journal = {Diskretnaya Matematika},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1991_3_1_a0/}
}
TY  - JOUR
AU  - V. I. Levenshtein
TI  - Perfect codes in the metric of deletions and insertions
JO  - Diskretnaya Matematika
PY  - 1991
SP  - 3
EP  - 20
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1991_3_1_a0/
LA  - ru
ID  - DM_1991_3_1_a0
ER  - 
%0 Journal Article
%A V. I. Levenshtein
%T Perfect codes in the metric of deletions and insertions
%J Diskretnaya Matematika
%D 1991
%P 3-20
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1991_3_1_a0/
%G ru
%F DM_1991_3_1_a0
V. I. Levenshtein. Perfect codes in the metric of deletions and insertions. Diskretnaya Matematika, Tome 3 (1991) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/DM_1991_3_1_a0/