A~lower bound on the register complexity of the computation of terms
Diskretnaya Matematika, Tome 2 (1990) no. 4, pp. 60-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a problem of calculating the terms $t$ of a family $T$ using a computer according to a program $\Pi (t)$. The quantity $S(t)=\min|\Pi (t)|$ is called the register complexity of calculating the term $t$, where $|\Pi (t)|$ is the number of registers used by the program $\Pi (t)$. We prove that $S(t)\geqslant h/2+1$ for the family of terms of height $h$.
@article{DM_1990_2_4_a5,
author = {Yu. V. Yatsishin},
title = {A~lower bound on the register complexity of the computation of terms},
journal = {Diskretnaya Matematika},
pages = {60--62},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1990_2_4_a5/}
}
Yu. V. Yatsishin. A~lower bound on the register complexity of the computation of terms. Diskretnaya Matematika, Tome 2 (1990) no. 4, pp. 60-62. http://geodesic.mathdoc.fr/item/DM_1990_2_4_a5/