Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 69-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of harmonic analysis, an upper estimate for the number of nonoverlapping balls of radius $\varepsilon$ in the $n$-dimensional torus is given. As a consequence, a new form of an estimate of V. I. Lövenstein for the density of balls of radius 1 in the space is obtained.
@article{DM_1989_1_2_a14,
     author = {V. A. Yudin},
     title = {Packings of balls in {Euclidean} space, and extremal problems for trigonometric polynomials},
     journal = {Diskretnaya Matematika},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a14/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials
JO  - Diskretnaya Matematika
PY  - 1989
SP  - 69
EP  - 72
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1989_1_2_a14/
LA  - ru
ID  - DM_1989_1_2_a14
ER  - 
%0 Journal Article
%A V. A. Yudin
%T Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials
%J Diskretnaya Matematika
%D 1989
%P 69-72
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1989_1_2_a14/
%G ru
%F DM_1989_1_2_a14
V. A. Yudin. Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 69-72. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a14/