Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 155-158
Cet article a éte moissonné depuis la source Math-Net.Ru
By means of harmonic analysis, an upper estimate for the number of nonoverlapping balls of radius $\varepsilon$ in the $n$-dimensional torus is given. As a consequence, a new form of an estimate of V. I. Lövenstein for the density of balls of radius 1 in the space is obtained.
@article{DM_1989_1_2_a14,
author = {V. A. Yudin},
title = {Packings of balls in {Euclidean} space, and extremal problems for trigonometric polynomials},
journal = {Diskretnaya Matematika},
pages = {155--158},
year = {1989},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a14/}
}
V. A. Yudin. Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 155-158. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a14/