The number of antichains in multilayered ranked sets
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 149-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the asymptotic behavior of the number of antichains in some multilayered partially ordered sets with a rank function given on them. As a consequence we obtain the asymptotic behavior of the number of monotone Boolean functions, the number of self-dual monotone Boolean functions, the number of monotone fuzzy $(0,1)$-functions, and the number of monotone Boolean functions that possess the property $\langle A^{(2)}\rangle$.
@article{DM_1989_1_2_a10,
     author = {A. A. Sapozhenko},
     title = {The number of antichains in multilayered ranked sets},
     journal = {Diskretnaya Matematika},
     pages = {149--169},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a10/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
TI  - The number of antichains in multilayered ranked sets
JO  - Diskretnaya Matematika
PY  - 1989
SP  - 149
EP  - 169
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1989_1_2_a10/
LA  - ru
ID  - DM_1989_1_2_a10
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%T The number of antichains in multilayered ranked sets
%J Diskretnaya Matematika
%D 1989
%P 149-169
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1989_1_2_a10/
%G ru
%F DM_1989_1_2_a10
A. A. Sapozhenko. The number of antichains in multilayered ranked sets. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 149-169. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a10/