The number of antichains in multilayered ranked sets
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 149-169
Voir la notice de l'article provenant de la source Math-Net.Ru
We find the asymptotic behavior of the number of antichains in some multilayered partially ordered sets with a rank function given on them. As a consequence we obtain the asymptotic behavior of the number of monotone Boolean functions, the number of self-dual monotone Boolean functions, the number of monotone fuzzy $(0,1)$-functions, and the number of monotone Boolean functions that possess the property $\langle A^{(2)}\rangle$.
@article{DM_1989_1_2_a10,
author = {A. A. Sapozhenko},
title = {The number of antichains in multilayered ranked sets},
journal = {Diskretnaya Matematika},
pages = {149--169},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a10/}
}
A. A. Sapozhenko. The number of antichains in multilayered ranked sets. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 149-169. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a10/