Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 15-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the asymptotic normality of one-dimensional and multi-dimensional symmetric decomposable statistics in an inhomogeneous scheme (independent of the position of the particle with a denumerable set of cells) are given. The proofs are based on the approximation of symmetric decomposable statistics by $U$-statistics.
@article{DM_1989_1_2_a1,
     author = {V. G. Mikhailov},
     title = {Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme},
     journal = {Diskretnaya Matematika},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a1/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme
JO  - Diskretnaya Matematika
PY  - 1989
SP  - 15
EP  - 27
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1989_1_2_a1/
LA  - ru
ID  - DM_1989_1_2_a1
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme
%J Diskretnaya Matematika
%D 1989
%P 15-27
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1989_1_2_a1/
%G ru
%F DM_1989_1_2_a1
V. G. Mikhailov. Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 15-27. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a1/