Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 15-27
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions for the asymptotic normality of one-dimensional and multi-dimensional symmetric decomposable statistics in an inhomogeneous scheme (independent of the position of the particle with a denumerable set of cells) are given. The proofs are based on the approximation of symmetric decomposable statistics by $U$-statistics.
@article{DM_1989_1_2_a1,
author = {V. G. Mikhailov},
title = {Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme},
journal = {Diskretnaya Matematika},
pages = {15--27},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a1/}
}
V. G. Mikhailov. Asymptotic normality of symmetric decomposable statistics in an inhomogeneous scheme. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 15-27. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a1/