Vector optimization of decompositions of root trees
Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 58-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the decompositions of root trees with vector vertex weights. We study a problem on the minimization of the number of the decomposition under a vector constraint. We prove the insolvability of this problem in a class of generalized finite automata over trees containing algorithms of gradient type. We estimate the error of the automaton algorithm, present an algorithm that solves a problem with polynomially bounded time complexity, and obtain an estimate for the number of parts of the decomposition.
@article{DM_1989_1_2_a0,
author = {A. A. Markov},
title = {Vector optimization of decompositions of root trees},
journal = {Diskretnaya Matematika},
pages = {58--68},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1989_1_2_a0/}
}
A. A. Markov. Vector optimization of decompositions of root trees. Diskretnaya Matematika, Tome 1 (1989) no. 2, pp. 58-68. http://geodesic.mathdoc.fr/item/DM_1989_1_2_a0/